## Calculate the limit

https://www.linkedin.com/groups/8313943/8313943-6369422736149794819
$\lim _{n \rightarrow \infty} \frac{\sqrt[n]{\sqrt{2!} \cdot \sqrt[3]{3!} \cdot \ldots \cdot \sqrt[n]{n!}}}{\sqrt[n+1]{(2 n+1)!!}}$
Solution by Arkady Alt, San Jose, California, USA.
First note that $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}=e$ and $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{(2 n-1)!!}}=\frac{e}{2}$.
Indeed, let $a_{n}:=\frac{n^{n}}{n!}$ and $b_{n}:=\frac{n^{n}}{(2 n-1)!!}, n \in \mathbb{N}$.
Since $\frac{n}{\sqrt[n]{n!}}=\sqrt[n]{a_{n}}, \frac{n}{\sqrt[n]{(2 n-1)!!}}=\sqrt[n]{b_{n}}$ and

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-n}=e
$$

$\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{2 n+1} \cdot\left(1+\frac{1}{n}\right)^{n}\right)=\frac{e}{2}$, then
by Multiplicative Stolz-Cezaro Theorem $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=e$ and $\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=\frac{e}{2}$.
Using that we obtain
$\lim _{n \rightarrow \infty} \frac{\sqrt[n]{\sqrt{2!} \cdot \sqrt[3]{3!} \cdot \ldots \cdot \sqrt[n]{n!}}}{\sqrt[n+1]{(2 n+1)!!}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{\sqrt[n+1]{(2 n+1)!!}} \cdot \frac{\sqrt[n]{\sqrt{2!} \cdot \sqrt[3]{3!} \cdot \ldots \cdot \sqrt[n]{n!}}}{n} \cdot \frac{n}{n+1}\right)=$
$\frac{e}{2} \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}$, where $c_{n}:=\frac{\sqrt{2!} \cdot \sqrt[3]{3!} \cdot \ldots \cdot \sqrt[n]{n!}}{n^{n}}$ and, since
$\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!}}{n+1} \cdot\left(1+\frac{1}{n}\right)^{-n}\right)=e^{-2}$,
then by Multiplicative Stolz-Cezaro Theorem $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=e^{-2}$.
Thus, $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{\sqrt{2!} \cdot \sqrt[3]{3!} \cdot \ldots \cdot \sqrt[n]{n!}}}{\sqrt[n+1]{(2 n+1)!!}}=\frac{e}{2} \cdot \frac{1}{e^{2}}=\frac{1}{2 e}$.

